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A necessary and sufficient condition of regularity of (0, 1, ..., m — 2, m)-interpola-
tion on the zeros of the Jacobi polynomials P*")(x) (z, 2 —1) in a manageable
form is established. Meanwhile, the explicit representation of the fundamental
polynomials, when they exist, is given. € (994 Academic Press, Inc.

1. INTRODUCTION

Let us consider a system A4 of nodes
1Z2x,>x,> - >x,2 —1, n=2. (rL.1)

Let P, be the set of polynomials of degree at most » and let m>2 be a
fixed integer. The problem of (0, 1, ..., m — 2, m)-interpolation is, given a set
of numbers,

Vi keN:={1,2..n}, jeM:={0,1,.,m—2,m} (1.2)
to determine a polynomtal R,,, (x; A)eP,,, , (if any) such that

R (xis A)= ¥y, Vke N,Vje M. (1.3)

mn

If for an arbitrary set of numbers y,; there exists a unique polynomial
R, (x;4)eP,, | satisfying (1.3) then we say that the problem of
(0, 1, ..., m — 2, m)-interpolation on A is regular (otherwise, is singular) and
R,.. 1(x;4) can be uniquely written as [2]

Rmn - I(X; A) = Z .}‘kjrkj(X; A )’ (14)
ke N
jeM
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where r,;eP,, , satisfy
re(x)=00,, kveEN, jueM (1.5)

and are called the fundamental polynomials.
In particular, for convenience of use we set

pi(x})i=r,,.(x), k=1,2,..,n (1.6)

On the problem of (0, 2)-interpolation Turan in [3] raises an open
problem as follows.

Problem 29. Find all Jacobi matrices P(a, ), «#f, for which the
(0, 2)-interpolation problem does have a unique solution.

By a Jacobi matrix P{z, ), Turan means the triangular matrix whose
nth row consists of the zeros of the nth Jacobi polynomial P!*#)(x)
(a, B2 —1).

Recently, Chak, Sharma, and Szabados {1] have given a necessary and
sufficient condition of regularity of (0, 2)-interpolation in a manageable
form on all Jacobi matrices P(«, ).

THEOREM A. The problem of (0, 2)-interpolation on the zeros of P!*"(x)
(2, B> —1) is uniquely solvable if and only if

Dx(a, B)#0, (1.7)

S e W
8

When a = —1, B> —1 the problem is always uniquely solvable.

where

DX¥(x B)= Y, . (1.8)
k=0

Meanwhile in their nice paper they also give the explicit representation
of the fundamental polynomials when they exist, except for the case when
2, B> —1 and a+ B=cven (see [ 1, Theorem 27]).

Following the main idea of Chak, Sharma, and Szabados in [1] in this
paper we attempt to give a necessary and sufficient condition of regularity
of (0,1, .., m—2 m)interpolation for all Jacobi matrices P(z, f)
(2, = —1). Meanwhile, we will also give the explicit representation of the
fundamental polynomials when they exist without exception. Thus our
results improve and extend the ones of [1].

640;76;2-10




276 YING GUANG SHI

In Section 2 we state some needed properties for the Jacobi polynomials.
In Section 3, a useful lemma of regularity for general (0, 1, .., m—2, m)-
interpolation is given. Section 4 deals with the regularity for P(a«, §) and
the explicit representation for the fundamental polynomials.

2. PRELIMINARIES

The following results are taken from [1, (2.1)(2.4)].
The Jacobi polynomial P!*#(x), «, B> —1, satisfies the differential
equation

(M=x)y"+[(B—a)—(B+a+2)x]y +n(n+a+B+1)y=0 (2.1)

and the normalization

Pr.m(l)=(”:°‘)_ (2.2)
We have
rep=2 3 (PO e s @)
k=0
P00 =" 1) P (4)

Now using (2.3) we can get

P = (P ) P (), 25)

3. AN AUXILIARY LEMMA

We first prove a lemma which is of independent interest. To this end we
introduce the fundamental polynomials of (0, 1, .., m— 1)-interpolation.
Let 4,,, B, eP,, , be defined by

AG(x,)=0,,0

Jus

k,v=12,.. n, Su=0,1,..m-1 (31)

and

1
Bi(x):=A4,,,_x) = (x—x, )" P(x), k=12,.,n (32)
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where

@,(x)

W)= ey

w,(xX)=c(x—x,)(x—x5) - (x—x,) (¢ #0).
(3.3)

Then we have

LEMMA. If there is one index i, 1 <i<n, such that p;,(x)eP,, , with
the properties (1.5) exists uniquely, then the problem of (0, 1, ..., m —2, m)-
interpolation is regular and

n

ri(X)= A (x) ~ Z A(x,) p.(x), k=1,2, ., n, j=0,1,. . m—2.
(3.4)

Proof. Since the problem of (0,1, .., m—1)-interpolation is always
regular and p, has a unique solution, p; can be uniquely written as

a m—1

pix)=3Y 3 piM(x,)A,(x)=

v=1 pu=0 v

P N(x)BAx).  (35)

1

Nagk:

This shows that the system of equations
Z P (x,) BN, )=6,, k=1,2,..n (3.6)
v=1

has a unique solution, which is equivalent to the nonsingularity of the
coefficient matrix

n = [B(m)(xk)]\ k=1" (37)

Thus for an arbitrary set of numbers y,, if we put
n m—1
mn ’C)'— Z Z a\“A‘“(Y)
yv=1 u=0
then the system of equations (1.3) becomes
Z Z a,AMNx)=1y, keN,  jeM.

v
v=1 pu=0

Hence we obtain

A= Vi k=12 ..,n, j=0,1.,m-=2
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and then the system of equations

n m-—2

n
( {
z av,m - B "”(Y Yiem — Z Z .)\;1A";4” xk)s k = 1’ 2’ e 1
v=1

v=1 pu=0

must have a unique solution, because the matrix B, is nonsingular. This
means that the problem is regular.

Finally it is easy to see that (3.4) is true when r,, satisfies (1.5).

This completes the proof.

Remark. Since the explicit representation for the 4,/s is well known, by
(3.4) it is sufficient to find the one for the p,’s.
4. MAIN RESULTS

In what follows let # be fixed and (1.1) the zeros of P!*")(x). Write

yi=3(m—1)(a+1), d:=i(m—=1)p+1), (4.1)
n+oa\/n+p
=2 " k=0,1,..,n .
=2 ("), o (42)
The main result in this paper is the following

THEOREM. The problem of (0, 1, ..., m— 2, m) interpolation on the zeros
of P*Px) (a, B = —1) is regular if and only if

D, (x, §) #0, (4.3)
where
.y 5
()
n k _k
" . a2 f> —1
k=0 (")
k
D, (a2, B)=" . i
o )
(m+l)< )—(m«l)(lH‘[Hh ), a=—1,> —1
n n
(._1)"D”(._],a)’ ‘1>—l,ﬂ=—1
T+(=1), a=fF=—1.
(4.4)
In particular, when o= —1, f> —1 or a> —1, i= —1 the problem is
always regular; when o= = —1 the problem is regular for even n and

singular for odd n.
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If the problem is regular, then for each i, 1 <i< n, the fundamental
polynomial p(x):=p,(x;a, B) is given by

(=" purr (=x;fa),  a>—-1L f=—1

4.
[P=H(x)]" ' g,(x), otherwise, (43)

pilx; a,B)={

in which q;€P,_, is of the form

gi(x)=(1—x) (1 +x)°
x {dﬂrfx (@)=, PF (I =y 7" (1 +0) 2! dt} (4.6)

with certain constants d; and c,, where

a={(1): zf:_l (4.7)
0,(x) = (48)
Proof. For simplicity we write
w,(x) = PF)(x), (4.9)
By (3.5) and (3.2) we may set
pilx) =) (x) g:(x), (4.10)
where ¢,€ P, _,. Then the requirement (1.5) yields
L7 '(x) g, (x)10 =0k, k=1,2,..,n (4.11)
It is easy to see that
[or ()10, = 3m =D ml o ()" 2 w(x,)
and
oy~ ()17 =(m— 1) o (x)" "
Then (4.11) becomes
1
5 m = 1) 0](x,) ,(xi) + w4 47 (xe)
=-~—é‘—7—2 k=1,2,.,n (4.12)
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It follows from (2.1) that

(1—=xP) o (x)=[la+ 1)1+ x)— (B+ 11— x)] w(x,),
k=1,2, .. n (4.13)

This, coupled with (4.12), gives

(1 —x3) gi(x)+ [y(1 +x0 =81 —x)] g,(x)
(1 —xi) i

=W, k=1,2,.,n (4.14)
Denote by D the differential operator
Dy:=(1—x)y 4+ [7y(1 +x)—-8(1 —x)] ». (4.15)
Then (4.14) implies
Dy, (x) = 0,(x) — ¢,,(x), (4.16)

where ¢, is a constant to be determined and Q,(x) is given by (4.8). Solving
this differential equation we get (4.6) with a constant d; to be determined.
Now let us determine ¢; and d;. To this end put

n—1

gi(0)= Y ax— D (x+ 1)k (4.17)

k=0

Meanwhile we write

0= ¥ Bulx—DF (x+ 1y (4.13)
k=0

We distinguish four cases.

Case 1 (o, > —1). Using (4.17), (4.18), and (2.3), and comparing the
coefficients of (x—1)* (x+1)* % on both sides in (4.16) we obtain the
system of equations

{(5—n+k)dk VG —k)ag =P, (k=0,1, ., n) (4.19)

Ot,,|=0(,,:0.

Expanding the coefficient determinant of this system in terms of the
elements of the last column we get (4.4) except for a nonzero factor. We
know that this system has a unique solution if and only if (4.3) is true. By
the Lemma this is equivalent to the regularity of (0, 1,..,m — 2, m)-
interpolation.

Solving (4.19) by Cramer’s rule we get c;.



REGULARITY OF JACOBI POLYNOMIALS 281

If y # an integer or k <7y then by (4.19)
1
“kzy__"/; {(n=0—k)o_ 4 Bu—vic;}

and hence by induction we get the formula of «,. Similarly if 4 # an integer
or k = n— 4 then it follows from (4.19) that

1

m:T{(k+l—}v)mk+,+[3k+l—~/k+lcl_}

o, =
and hence by induction we also get the formula of x,. Then we can
determine d,, since in this case by (4.6) and (4.17) one has

n—1

di=q,(0)=3 (=1,
k=0
We point out that if (4.3) is true then o, may always be determined. In
fact, if both y and ¢ are integers, and if for some k, 1<k<n, the
inequalities k=7 and n—k>J hold, then n>y+4. Thus for each j
0<j<n, either j>7y or n—j>J holds and hence (j)(,,fsj)=0, which
implies D, («, 8)=0, a contradiction.

Case 1l (x= —1, > —1). Inthis case x,=1 and y=7,=f,=0. Then
the equation with k=0 in (4.19) becomes an identity. But by (2.4) we have

n-l-ﬁ 1

P == P (1) =5 (n+ ) (4.20)

l\)

and

Py =tEE
n

PP, (421)

Thus by (4.12) one has
(m—1) 278,
n

'(lﬂ _
)(])‘1“)+CI( ) m’(n+ﬁ)'"7|

(4.22)

On the other hand, by (2.1), P!"#)(x) satisfies the equation

(1=x)PUPy+[(B-1) —(lf+3)r] PP (x)
+(n—D)n+p+1) PUA(x)= (4.23)

n—

and hence by (2.2)
POMy=in—=Dm+p+ 1) PHAN)=5nn—1)n+B+1). (424)
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This, together with (4.22), gives

2m+l§_l
4qg;(1 —1)n—1 ()= ———"—. 2
g;(1)+(m—1)(n—1)(n+F+1)q,(1) g By (4.25)
Meanwhile, by means of (4.17) we obtain
qi(1)=2""[(n—1) ap+2,] (4.26)
and
g (1)y=2""la,. (4.27)
Therefore (4.25) becomes
1 2m+l—n5“
cxl+§(n—1)[(nz—1)n+25+2]a0=W. (4.28)
Adding this equation to the equation with k=1 in (4.19) we get
L m— 1)+ ) ntg 7,02 4 — 00 (4.29)
2 0 716, =P m!(""‘ﬁ)m.‘l' :
At last we obtain the system of equations for this case:
1 2m+1 Héi
S (m—= 1)+ B nag + 7y¢,= fy + ———r
2 m!(n+p) (4.30)
(0—n+k)oy | —kay+7yec,= Py (k=1,..,n) .
o, =0.

n

Expanding the coefficient determinant of this system in terms of the
elements of the last column we get

A,,(—l,B)z(i)n!pr%(m—1)(n-+-[5)n

X Z (*Uk”:’k(—l)k”(k*1)1<nfk)(n—k)!

(e ()
=2_n1,1!(n+/3){(m+l)<z)—(m—l)ki()(nzﬂ)(nik)}

=2*""n!(n+ﬁ){(m+1)(i>_ —1)("+b’+5)}

=2"""Inl(n+pB)D(—1, B),
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here we use an identity [1, p. 446]]
i(n-{-ﬁ)( 3 >_<n+ﬂ+5>
o\ Na—k) n ‘
Since

(m_1)<n+[3+(3> (m?* —1)(,3+1)"1:['

n 2n!

[2( 1+1)(B+1)+k}

k=1

and

s 2 1)1t
e (3) =D [ gy

it follows from
sm+ DB+ D +k>Im—D(B+ D +k>{im— 1)+ 1)—Kk]
that D,(—1, B)#0.
Now solving {4.30) we can determine c,.
Clearly, in this case by (4.6) and (4.27) we have
d=27%,(1)=2""" ‘.

This, coupled with the first equation in (4.30), gives d,.
Case III (x> —1, f= —1). First we note that
PPN x)=(=1)" PP(~x). (4.31)
Using (4.31) and the above arguments we obtain the formulas
Py V(=) == 1) (n+a),
P —1)=3(=1)"(n—D)(n+a)(n+a+1),
g, (—D=(=2)"""a,_,,
gi(—)=(=2)""[(n—1D)a,_, +a, ,]
Then it follows from (4.12} and the equation with k =xn—1 in (4.19) that

(n-D+1Am+1—ng
(_l)m n 2 ? nom

m—1

(m—1)n+a)na, | +7, 1¢,=Po_+ (4.32)

N —

m!(n+a)
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At last we obtain the system of equations for this case:
(k*n) ka—— 1 + (’}'_k)dk+}ykci:ﬂk (k:()s 17 vy B— 1)
(_l)ml"* 1+1 2m+l n(s
m!(n+a)" !

in

%(m~ Dn+o)na, +v, . ¢,=8,_+
o« =0.
By calculation we get
D, —1)=(=1)"D, (1, a).
By (4.31) and by the definition of the p/s it is easy to check the first
formula in (4.5).
Case 1V (o= f= —1). In this case (4.29) and (4.32) become

2m+lﬁn6il
m!(n—1)"""

(m—1)n—1)ntg+y,c,= B, + (4.33)

N —

and
(_l)m(n—l)+l 2m+lfr15m
m!(n—1)""1! '

1
5(”1_ 1)(”'_ l)nan—l-,’-ynflci:ﬁn”l +
(4.34)

At last we obtain the system of equations for this case:

1 2m+ l 77116”

S(m—1)(n— l)nao+}’lcv=ﬁl+m:—l

(k—n)o,_ | —koy+y,0,= B (k=1,..,n—1) (4.35)

(_])m(nfl)+1 2m+lfn6_
m!(n—1)y"""

ro

_(m_l)(n_l)nanfl+~)}n~lci:ﬂnfl+

o |

Expanding the coeflicient determinant of this system in terms of the
elements of the last column we get

1
An(~1,—1)=§(m—1)('1—1)"{[7'|+(~1)"}'n~ J(=1)"" (n=1)!
n-1
+%(m—1)(n—1)n o=y k=) (n—k— 1)y}
k=1

=(=1)"" 12" Y im=1)n—1)n!

1 n- 1
x{[l+(—1>"](n—1)—5(m—1)<n—1) ) (—U"(Z)}

= (=112 A= (=12t 1+ (= 1))
=(=1)" 12 "2mP—1)n—1Pn!D,(—1,—1).
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Obviously, if n is odd, then D,(—1,—1)=0 and if n is even then
D(-1,~1)=2.

Solving (4.35) by Cramer’s rule for even n we obtain ¢;. Meanwhile using
d =q,(1)=2"""a, and (4.33) we give d,.

This completes the proof.

COROLLARY. Let o, f > —1. The problem of (0, 1, ..., m — 2, m)-interpola-
tion is singular if one of the following conditions is satisfied

(a) Both y and 6 are integers, and n> 7y + d;
(b) a=pf and n is odd.

The problem is regular if only one of y and o is an integer and if n> 7y + 6.

Proof. Case (a) has been shown in the proof of the theorem. Now let us
show Case (b). Since

D”(TX, B) = ( —1)" Dn(ﬂ' a)a

if nis odd and a = f then D, (x, 2)=0.
For the last conclusion we note that if, say, y is an integer and d is not, then

k(Y Y .
()
; .
()
0 —(_fyr—k+[31+1
sgn(n_k>—( 1) .

SgNn D,,,,(d, B)=(—1)"+[6]+l-

D, (a, f)=n! i
k=0

But

So

This completes the proof.
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