Regularity and Explicit Representation of ($0,1, \ldots, m-2, m$)-Interpolation on the Zeros of the Jacobi Polynomials*

Ying Guang Shi
Computing Center, Chinese Academy of Sciences, P.O. Box 2719, Beijing 100080, China
Communicated by Doron S. Lubinsky

Received February 21, 1992; accepted in revised form September 21, 1992

Abstract

A necessary and sufficient condition of regularity of $(0,1, \ldots, m-2, m)$-interpolation on the zeros of the Jacobi polynomials $P_{n}^{(x, \beta)}(x)(x, \beta \geqslant-1)$ in a manageable form is established. Meanwhile, the explicit representation of the fundamental polynomials, when they exist, is given. 1994 Academic Press, Inc.

1. Introduction

Let us consider a system A of nodes

$$
\begin{equation*}
1 \geqslant x_{1}>x_{2}>\cdots>x_{n} \geqslant-1, \quad n \geqslant 2 . \tag{1.1}
\end{equation*}
$$

Let \mathbf{P}_{n} be the set of polynomials of degree at most n and let $m \geqslant 2$ be a fixed integer. The problem of $(0,1, \ldots, m-2, m)$-interpolation is, given a set of numbers,

$$
\begin{equation*}
y_{k j}, \quad k \in N:=\{1,2, \ldots, n\}, \quad j \in M:=\{0,1, \ldots, m-2, m\} \tag{1.2}
\end{equation*}
$$

to determine a polynomial $R_{m n-1}(x ; A) \in \mathbf{P}_{m n-1}$ (if any) such that

$$
\begin{equation*}
R_{m m}^{(j)} \quad\left(x_{k} ; A\right)=y_{k j}, \quad \forall k \in N, \forall j \in M . \tag{1.3}
\end{equation*}
$$

If for an arbitrary set of numbers $y_{k j}$ there exists a unique polynomial $R_{m n, 1}(x ; A) \in \mathbf{P}_{m,}$, satisfying (1.3) then we say that the problem of $(0,1, \ldots, m-2, m)$-interpolation on A is regular (otherwise, is singular) and $R_{m n},(x ; A)$ can be uniquely written as [2]

$$
\begin{equation*}
R_{m n-1}(x ; A)=\sum_{\substack{k \in N \\ j \in M}} y_{k j} r_{k j}(x ; A), \tag{1.4}
\end{equation*}
$$

[^0]where $r_{k j} \in \mathbf{P}_{m n-1}$ satisfy
\[

$$
\begin{equation*}
r_{k j}^{(\mu)}\left(x_{v}\right)=\delta_{k v} \delta_{j \mu}, \quad k, v \in N, \quad j, \mu \in M \tag{1.5}
\end{equation*}
$$

\]

and are called the fundamental polynomials.
In particular, for convenience of use we set

$$
\begin{equation*}
\rho_{k}(x):=r_{k m}(x), \quad k=1,2, \ldots, n . \tag{1.6}
\end{equation*}
$$

On the problem of (0,2)-interpolation Turán in [3] raises an open problem as follows.

Problem 29. Find all Jacobi matrices $P(\alpha, \beta), \alpha \neq \beta$, for which the $(0,2)$-interpolation problem does have a unique solution.

By a Jacobi matrix $P(\alpha, \beta)$, Turán means the triangular matrix whose nth row consists of the zeros of the nth Jacobi polynomial $P_{n}^{(\alpha, \beta)}(x)$ ($x, \beta \geqslant-1$).

Recently, Chak, Sharma, and Szabados [1] have given a necessary and sufficient condition of regularity of (0,2)-interpolation in a manageable form on all Jacobi matrices $P(\alpha, \beta)$.

Theorem A. The problem of (0, 2)-interpolation on the zeros of $P_{n}^{(x, \beta)}(x)$ $(x, \beta>-1)$ is uniquely solvable if and only if

$$
\begin{equation*}
D_{n}^{*}(\alpha, \beta) \neq 0 \tag{1.7}
\end{equation*}
$$

where

$$
\begin{equation*}
D_{n}^{*}(\alpha, \beta)=\sum_{k=0}^{n} \frac{(-1)^{k}\binom{n+\alpha}{n-k}\binom{n+\beta}{k}\binom{(1 / 2)(\alpha+1)}{k}\binom{(1 / 2)(\beta+1)}{n-k}}{\binom{n}{k}} \tag{1.8}
\end{equation*}
$$

When $\alpha=-1, \beta>-1$ the problem is always uniquely solvable.
Meanwhile in their nice paper they also give the explicit representation of the fundamental polynomials when they exist, except for the case when $x, \beta>-1$ and $\alpha+\beta=\operatorname{even}$ (see [1, Theorem 2]).

Following the main idea of Chak, Sharma, and Szabados in [1] in this paper we attempt to give a necessary and sufficient condition of regularity of $(0,1, \ldots, m-2, m)$-interpolation for all Jacobi matrices $P(\alpha, \beta)$ $(x, \beta \geqslant-1)$. Meanwhile, we will also give the explicit representation of the fundamental polynomials when they exist without exception. Thus our results improve and extend the ones of [1].

In Section 2 we state some needed properties for the Jacobi polynomials. In Section 3, a useful lemma of regularity for general $(0,1, \ldots, m-2, m)$ interpolation is given. Section 4 deals with the regularity for $P(\alpha, \beta)$ and the explicit representation for the fundamental polynomials.

2. Preliminaries

The following results are taken from [1, (2.1)-(2.4)].
The Jacobi polynomial $P_{n}^{(x, \beta)}(x), \alpha, \beta \geqslant-1$, satisfies the differential equation

$$
\begin{equation*}
\left(1-x^{2}\right) y^{\prime \prime}+[(\beta-\alpha)-(\beta+\alpha+2) x] y^{\prime}+n(n+\alpha+\beta+1) y=0 \tag{2.1}
\end{equation*}
$$

and the normalization

$$
\begin{equation*}
P_{n}^{(\alpha, \beta)}(1)=\binom{n+\alpha}{n} \tag{2.2}
\end{equation*}
$$

We have

$$
\begin{align*}
P_{n}^{(x, \beta)}(x) & =2^{-n} \sum_{k=0}^{n}\binom{n+\alpha}{n-k}\binom{n+\beta}{k}(x-1)^{k}(x+1)^{n-k}, \tag{2.3}\\
P_{n}^{(-1, \beta)}(x) & =\frac{n+\beta}{2 n}(x-1) P_{n-1}^{(1, \beta)}(x) . \tag{2.4}
\end{align*}
$$

Now using (2.3) we can get

$$
\begin{equation*}
P_{n}^{(-1,-1)}(x)=\frac{1}{2 n}\left(x^{2}-1\right) P_{n-1}^{\prime}(x) \tag{2.5}
\end{equation*}
$$

3. An Auxiliary Lemma

We first prove a lemma which is of independent interest. To this end we introduce the fundamental polynomials of $(0,1, \ldots, m-1)$-interpolation. Let $A_{k j}, B_{k} \in \mathbf{P}_{m n-1}$ be defined by

$$
\begin{equation*}
A_{k j}^{(\mu)}\left(x_{v}\right)=\delta_{k v} \delta_{j \mu}, \quad k, v=1,2, \ldots, n, \quad j, \mu=0,1, \ldots, m-1 \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
B_{k}(x):=A_{k, m-1}(x)=\frac{1}{m!}\left(x-x_{k}\right)^{m-1} l_{k}^{m}(x), \quad k=1,2, \ldots, n \tag{3.2}
\end{equation*}
$$

where

$$
\begin{equation*}
I_{k}(x):=\frac{\omega_{n}(x)}{\left(x-x_{k}\right) \omega_{n}^{\prime}\left(x_{k}\right)}, \quad \omega_{n}(x)=c\left(x-x_{1}\right)\left(x-x_{2}\right) \cdots\left(x-x_{n}\right)(c \neq 0) . \tag{3.3}
\end{equation*}
$$

Then we have
Lemma. If there is one index $i, 1 \leqslant i \leqslant n$, such that $\rho_{i}(x) \in \mathbf{P}_{m n-1}$ with the properties (1.5) exists uniquely, then the problem of $(0,1, \ldots, m-2, m)$ interpolation is regular and
$r_{k j}(x)=A_{k j}(x)-\sum_{v=1}^{n} A_{k j}^{(m)}\left(x_{v}\right) \rho_{v}(x), \quad k=1,2, \ldots, n, \quad j=0,1, \ldots, m-2$.

Proof. Since the problem of $(0,1, \ldots, m-1)$-interpolation is always regular and ρ_{i} has a unique solution, ρ_{i} can be uniquely written as

$$
\begin{equation*}
\rho_{i}(x)=\sum_{v=1}^{n} \sum_{n=0}^{m-1} \rho_{i}^{(\mu)}\left(x_{v}\right) A_{v \mu}(x)=\sum_{v=1}^{n} \rho_{i}^{(m-1)}\left(x_{v}\right) B_{v}(x) . \tag{3.5}
\end{equation*}
$$

This shows that the system of equations

$$
\begin{equation*}
\sum_{v=1}^{n} \rho_{i}^{(m-1)}\left(x_{v}\right) B_{v}^{(m)}\left(x_{k}\right)=\delta_{i k}, \quad k=1,2, \ldots, n \tag{3.6}
\end{equation*}
$$

has a unique solution, which is equivalent to the nonsingularity of the coefficient matrix

$$
\begin{equation*}
\mathbf{B}_{n}:=\left[B_{v}^{(m)}\left(x_{k}\right)\right]_{v, k=1}^{n} . \tag{3.7}
\end{equation*}
$$

Thus for an arbitrary set of numbers $y_{k j}$ if we put

$$
R_{m n-1}(x)=\sum_{v=1}^{n} \sum_{\mu=0}^{m-1} a_{v \mu} A_{v \mu}(x)
$$

then the system of equations (1.3) becomes

$$
\sum_{v=1}^{n} \sum_{\mu=0}^{m-1} a_{v \mu} A_{v \mu}^{(j)}\left(x_{k}\right)=y_{k j}, \quad k \in N, \quad j \in M .
$$

Hence we obtain

$$
a_{k j}=y_{k j}, \quad k=1,2, \ldots, n, \quad j=0,1, \ldots, m-2
$$

and then the system of equations

$$
\sum_{v=1}^{n} a_{v, m-1} B_{v}^{(m)}\left(x_{k}\right)=y_{k m}-\sum_{v=1}^{n} \sum_{\mu=0}^{m-2} y_{v \mu} A_{v \mu}^{(m)}\left(x_{k}\right), \quad k=1,2, \ldots, n
$$

must have a unique solution, because the matrix \mathbf{B}_{n} is nonsingular. This means that the problem is regular.

Finally it is easy to see that (3.4) is true when $r_{k j}$ satisfies (1.5).
This completes the proof.
Remark. Since the explicit representation for the $A_{k j}$'s is well known, by (3.4) it is sufficient to find the one for the ρ_{k} 's.

4. Main Results

In what follows let n be fixed and (1.1) the zeros of $P_{n}^{(x, \beta)}(x)$. Write

$$
\begin{align*}
& \gamma:=\frac{1}{2}(m-1)(\alpha+1), \quad \delta:=\frac{1}{2}(m-1)(\beta+1), \tag{4.1}\\
& \gamma_{k}:=2 n\binom{n+\alpha}{n-k}\binom{n+\beta}{k}, \quad k=0,1, \ldots, n . \tag{4.2}
\end{align*}
$$

The main result in this paper is the following
Theorem. The problem of $(0,1, \ldots, m-2, m)$ interpolation on the zeros of $P_{n}^{(\alpha, \beta)}(x)(\alpha, \beta \geqslant-1)$ is regular if and only if

$$
\begin{equation*}
D_{n}(\alpha, \beta) \neq 0 \tag{4.3}
\end{equation*}
$$

where

$$
D_{n}(\alpha, \beta)= \begin{cases}\sum_{k=0}^{n} \frac{(-1)^{k}\binom{\gamma}{k}\binom{\delta}{n-k} \gamma_{k}}{\binom{n}{k}}, & \alpha, \beta>-1 \tag{4.4}\\ (m+1)\binom{\delta}{n}-(m-1)\binom{n+\beta+\delta}{n}, & \alpha=-1, \beta>-1 \\ (-1)^{n} D_{n}(-1, \alpha), & \alpha>-1, \beta=-1 \\ 1+(-1)^{n}, & \alpha=\beta=-1 .\end{cases}
$$

In particular, when $\alpha=-1, \beta>-1$ or $\alpha>-1, \beta=-1$ the problem is always regular; when $\alpha=\beta=-1$ the problem is regular for even n and singular for odd n.

If the problem is regular, then for each $i, 1 \leqslant i \leqslant n$, the fundamental polynomial $\rho_{i}(x):=\rho_{i}(x ; \alpha, \beta)$ is given by

$$
\rho_{i}(x ; \alpha, \beta)= \begin{cases}(-1)^{m} \rho_{n+1-i}(-x ; \beta, x), & \alpha>-1, \beta=-1 \tag{4.5}\\ {\left[P_{n}^{(x, \beta)}(x)\right]^{m}{ }^{1} q_{i}(x),} & \text { otherwise },\end{cases}
$$

in which $q_{i} \in \mathbf{P}_{n-1}$ is of the form

$$
\begin{align*}
q_{i}(x)= & (1-x)^{\gamma}(1+x)^{\delta} \\
& \times\left\{d_{i}+\int_{a}^{x}\left[Q_{i}(t)-c_{i} P_{n}^{(\alpha, \beta)}(t)\right](1-t)^{-\gamma-1}(1+t)^{-\delta-1} d t\right\} \tag{4.6}
\end{align*}
$$

with certain constants d_{i} and c_{i}, where

$$
\begin{align*}
a & = \begin{cases}0, & \alpha, \beta>-1 \\
1, & \alpha=-1,\end{cases} \tag{4.7}\\
Q_{i}(x) & =\frac{\left(1-x_{i}^{2}\right) l_{i}(x)}{m!\left[P_{n}^{1(x, \beta)}\left(x_{i}\right)\right]^{m-1}} . \tag{4.8}
\end{align*}
$$

Proof. For simplicity we write

$$
\begin{equation*}
\omega_{n}(x)=P_{n}^{(x, \beta)}(x) . \tag{4.9}
\end{equation*}
$$

By (3.5) and (3.2) we may set

$$
\begin{equation*}
\rho_{i}(x)=\omega_{n}^{m \cdots 1}(x) q_{i}(x) \tag{4.10}
\end{equation*}
$$

where $q_{i} \in \mathbf{P}_{n-1}$. Then the requirement (1.5) yields

$$
\begin{equation*}
\left[\omega_{n}^{m-1}(x) q_{i}(x)\right]_{x=x_{k}}^{(m)}=\delta_{i k}, \quad k=1,2, \ldots, n \tag{4.11}
\end{equation*}
$$

It is easy to see that

$$
\left[\omega_{n}^{m-1}(x)\right]_{x=x_{k}}^{(m)}=\frac{1}{2}(m-1) m!\omega_{n}^{\prime}\left(x_{k}\right)^{m-2} \omega_{n}^{\prime \prime}\left(x_{k}\right)
$$

and

$$
\left[\omega_{n}^{m-1}(x)\right]_{x=x_{k}}^{(m-1)}=(m-1)!\omega_{n}^{\prime}\left(x_{k}\right)^{m-1}
$$

Then (4.11) becomes

$$
\begin{align*}
\frac{1}{2}(m & -1) \omega_{n}^{\prime \prime}\left(x_{k}\right) q_{i}\left(x_{k}\right)+\omega_{n}^{\prime}\left(x_{k}\right) q_{i}^{\prime}\left(x_{k}\right) \\
& =\frac{\delta_{i k}}{m!\omega_{n}^{\prime}\left(x_{k}\right)^{m-2}}, \quad k=1,2, \ldots, n \tag{4.12}
\end{align*}
$$

It follows from (2.1) that

$$
\begin{gather*}
\left(1-x_{k}^{2}\right) \omega_{n}^{\prime \prime}\left(x_{k}\right)=\left[(\alpha+1)\left(1+x_{k}\right)-(\beta+1)\left(1-x_{k}\right)\right] \omega_{n}^{\prime}\left(x_{k}\right) \\
k=1,2, \ldots, n \tag{4.13}
\end{gather*}
$$

This, coupled with (4.12), gives

$$
\begin{gather*}
\left(1-x_{k}^{2}\right) q_{i}^{\prime}\left(x_{k}\right)+\left[\gamma\left(1+x_{k}\right)-\delta\left(1-x_{k}\right)\right] q_{i}\left(x_{k}\right) \\
=\frac{\left(1-x_{k}^{2}\right) \delta_{i k}}{m!\omega_{n}^{\prime}\left(x_{k}\right)^{m-1}}, \quad k=1,2, \ldots, n \tag{4.14}
\end{gather*}
$$

Denote by \mathbf{D} the differential operator

$$
\begin{equation*}
\mathbf{D} y:=\left(1-x^{2}\right) y^{\prime}+[\gamma(1+x)-\delta(1-x)] y \tag{4.15}
\end{equation*}
$$

Then (4.14) implies

$$
\begin{equation*}
\mathbf{D} q_{i}(x)=Q_{i}(x)-c_{i} \omega_{n}(x) \tag{4.16}
\end{equation*}
$$

where c_{i} is a constant to be determined and $Q_{i}(x)$ is given by (4.8). Solving this differential equation we get (4.6) with a constant d_{i} to be determined.

Now let us determine c_{i} and d_{i}. To this end put

$$
\begin{equation*}
q_{i}(x)=\sum_{k=0}^{n-1} \alpha_{k}(x-1)^{k}(x+1)^{n-1-k} \tag{4.17}
\end{equation*}
$$

Meanwhile we write

$$
\begin{equation*}
Q_{i}(x)=\sum_{k=0}^{n} \beta_{k}(x-1)^{k}(x+1)^{n-k} \tag{4.18}
\end{equation*}
$$

We distinguish four cases.
Case I $(\alpha, \beta>-1)$. Using (4.17), (4.18), and (2.3), and comparing the coefficients of $(x-1)^{k}(x+1)^{n-k}$ on both sides in (4.16) we obtain the system of equations

$$
\left\{\begin{array}{l}
(\delta-n+k) \alpha_{k, 1}+(\gamma-k) \alpha_{k}+\gamma_{k} c_{i}=\beta_{k} \quad(k=0,1, \ldots, n) \tag{4.19}\\
\alpha_{-1}=\alpha_{n}=0 .
\end{array}\right.
$$

Expanding the coefficient determinant of this system in terms of the elements of the last column we get (4.4) except for a nonzero factor. We know that this system has a unique solution if and only if (4.3) is true. By the Lemma this is equivalent to the regularity of $(0,1, \ldots, m-2, m)$ interpolation.

Solving (4.19) by Cramer's rule we get c_{i}.

If $\gamma \neq$ an integer or $k<\gamma$ then by (4.19)

$$
\alpha_{k}=\frac{1}{\gamma-k}\left\{(n-\delta-k) \alpha_{k-1}+\beta_{k}-\gamma_{k} c_{i}\right\}
$$

and hence by induction we get the formula of α_{k}. Similarly if $\delta \neq$ an integer or $k \geqslant n-\delta$ then it follows from (4.19) that

$$
\alpha_{k}=\frac{1}{\delta-n+k+1}\left\{(k+1-\gamma) \alpha_{k+1}+\beta_{k+1}-\gamma_{k+1} c_{i}\right\}
$$

and hence by induction we also get the formula of α_{k}. Then we can determine d_{i}, since in this case by (4.6) and (4.17) one has

$$
d_{i}=q_{i}(0)=\sum_{k=0}^{n-1}(-1)^{k} \alpha_{k}
$$

We point out that if (4.3) is true then α_{k} may always be determined. In fact, if both γ and δ are integers, and if for some $k, 1 \leqslant k \leqslant n$, the inequalities $k \geqslant \gamma$ and $n-k>\delta$ hold, then $n>\gamma+\delta$. Thus for each j, $0 \leqslant j \leqslant n$, either $j>\gamma$ or $n-j>\delta$ holds and hence $\left(j_{j}^{j}\right)\binom{\delta}{n-j}=0$, which implies $D_{n}(\alpha, \beta)=0$, a contradiction.

Case II $(\alpha=-1, \beta>-1)$. In this case $x_{1}=1$ and $\gamma=\gamma_{0}=\beta_{0}=0$. Then the equation with $k=0$ in (4.19) becomes an identity. But by (2.4) we have

$$
\begin{equation*}
P_{n}^{\prime(-1, \beta)}(1)=\frac{n+\beta}{2 n} P_{n-1}^{(1, \beta)}(1)=\frac{1}{2}(n+\beta) \tag{4.20}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{n}^{\prime \prime(-1, \beta)}(1)=\frac{n+\beta}{n} P_{n}^{\prime(1, \beta)}(1) . \tag{4.21}
\end{equation*}
$$

Thus by (4.12) one has

$$
\begin{equation*}
\frac{(m-1)}{n} P_{n-1}^{\prime(1, \beta)}(1) q_{i}(1)+q_{i}^{\prime}(1)=\frac{2^{m-1} \delta_{i 1}}{m!(n+\beta)^{m-1}} \tag{4.22}
\end{equation*}
$$

On the other hand, by (2.1), $P_{n-1}^{(1, \beta)}(x)$ satisfies the equation

$$
\begin{align*}
& \left(1-x^{2}\right) P_{n-1}^{\prime \prime(1, \beta)}(x)+[(\beta-1)-(\beta+3) x] P_{n \cdot 1}^{\prime(1, \beta)}(x) \\
& \quad+(n-1)(n+\beta+1) P_{n-1}^{(1, \beta)}(x)=0 \tag{4.23}
\end{align*}
$$

and hence by (2.2)

$$
\begin{equation*}
P_{n-1}^{\prime(1, \beta)}(1)=\frac{1}{4}(n-1)(n+\beta+1) P_{n-1}^{(1, \beta)}(1)=\frac{1}{4} n(n-1)(n+\beta+1) . \tag{4.24}
\end{equation*}
$$

This, together with (4.22), gives

$$
\begin{equation*}
4 q_{i}^{\prime}(1)+(m-1)(n-1)(n+\beta+1) q_{i}(1)=\frac{2^{m+1} \delta_{i 1}}{m!(n+\beta)^{m-1}} . \tag{4.25}
\end{equation*}
$$

Meanwhile, by means of (4.17) we obtain

$$
\begin{equation*}
q_{i}^{\prime}(1)=2^{n-2}\left[(n-1) \alpha_{0}+\alpha_{1}\right] \tag{4.26}
\end{equation*}
$$

and

$$
\begin{equation*}
q_{i}(1)=2^{n-1} \alpha_{0} \tag{4.27}
\end{equation*}
$$

Therefore (4.25) becomes

$$
\begin{equation*}
\alpha_{1}+\frac{1}{2}(n-1)[(m-1) n+2 \delta+2] \alpha_{0}=\frac{2^{m+1-n} \delta_{i 1}}{m!(n+\beta)^{m+1}} . \tag{4.28}
\end{equation*}
$$

Adding this equation to the equation with $k=1$ in (4.19) we get

$$
\begin{equation*}
\frac{1}{2}(m-1)(n+\beta) n \alpha_{0}+\gamma_{1} c_{i}=\beta_{1}+\frac{2^{m+1-n} \delta_{i 1}}{m!(n+\beta)^{m-1}} \tag{4.29}
\end{equation*}
$$

At last we obtain the system of equations for this case:

$$
\left\{\begin{array}{l}
\frac{1}{2}(m-1)(n+\beta) n \alpha_{0}+\gamma_{1} c_{i}=\beta_{1}+\frac{2^{m+1} n \delta_{i 1}}{m!(n+\beta)^{m-1}} \tag{4.30}\\
(\delta-n+k) \alpha_{k-1}-k \alpha_{k}+\gamma_{k} c_{i}=\beta_{k} \quad(k=1, \ldots, n) \\
\alpha_{n}=0 .
\end{array}\right.
$$

Expanding the coefficient determinant of this system in terms of the elements of the last column we get

$$
\begin{aligned}
A_{n}(-1, \beta)= & \binom{\delta}{n} n!\gamma_{1}+\frac{1}{2}(m-1)(n+\beta) n \\
& \times \sum_{k=1}^{n}(-1)^{k} \gamma_{k}(-1)^{k-1}(k-1)!\binom{\delta}{n-k}(n-k)! \\
= & 2^{-n-1} n!(n+\beta)\left\{2\binom{\delta}{n}-(m-1) \sum_{k=1}^{n}\binom{n+\beta}{k}\binom{\delta}{n-k}\right\} \\
= & 2^{-n-1} n!(n+\beta)\left\{(m+1)\binom{\delta}{n}-(m-1) \sum_{k=0}^{n}\binom{n+\beta}{k}\binom{\delta}{n-k}\right\} \\
= & 2^{-n-1} n!(n+\beta)\left\{(m+1)\binom{\delta}{n}-(m-1)\binom{n+\beta+\delta}{n}\right\} \\
= & 2^{-n-1} n!(n+\beta) D_{n}(-1, \beta),
\end{aligned}
$$

here we use an identity [1, p. 446]

$$
\sum_{k=0}^{n}\binom{n+\beta}{k}\binom{\delta}{n-k}=\binom{n+\beta+\delta}{n}
$$

Since

$$
(m-1)\binom{n+\beta+\delta}{n}=\frac{\left(m^{2}-1\right)(\beta+1)}{2 n!} \prod_{k=1}^{n-1}\left[\frac{1}{2}(m+1)(\beta+1)+k\right]
$$

and

$$
(m+1)\binom{\delta}{n}=\frac{\left(m^{2}-1\right)(\beta+1)}{2 n!} \prod_{k=1}^{n-1}\left[\frac{1}{2}(m-1)(\beta+1)-k\right],
$$

it follows from

$$
\frac{1}{2}(m+1)(\beta+1)+k>\frac{1}{2}(m-1)(\beta+1)+k>\left|\frac{1}{2}(m-1)(\beta+1)-k\right|
$$

that $D_{n}(-1, \beta) \neq 0$.
Now solving (4.30) we can determine c_{i}.
Clearly, in this case by (4.6) and (4.27) we have

$$
d_{i}=2^{-\delta} q_{i}(1)=2^{n-1 \cdots \delta} x_{0} .
$$

This, coupled with the first equation in (4.30), gives d_{i}.
Case III $(x>-1, \beta=-1)$. First we note that

$$
\begin{equation*}
P_{n}^{(\beta, x)}(x)=(-1)^{n} P_{n}^{(x, \beta)}(-x) . \tag{4.31}
\end{equation*}
$$

Using (4.31) and the above arguments we obtain the formulas

$$
\begin{aligned}
P_{n}^{\prime(\alpha,-1)}(-1) & =\frac{1}{2}(-1)^{n-1}(n+\alpha), \\
P_{n}^{\prime \prime(\alpha,-1)}(-1) & =\frac{1}{4}(-1)^{n}(n-1)(n+\alpha)(n+\alpha+1), \\
q_{i}(-1) & =(-2)^{n-1} \alpha_{n-1}, \\
q_{i}^{\prime}(-1) & =(-2)^{n-2}\left[(n-1) \alpha_{n-1}+\alpha_{n-2}\right] .
\end{aligned}
$$

Then it follows from (4.12) and the equation with $k=n-1$ in (4.19) that

$$
\begin{equation*}
\frac{1}{2}(m-1)(n+\alpha) n \alpha_{n-1}+\gamma_{n-1} c_{i}=\beta_{n-1}+\frac{(-1)^{m(n-1)+1} 2^{m+1-n} \delta_{i n}}{m!(n+\alpha)^{m-1}} \tag{4.32}
\end{equation*}
$$

At last we obtain the system of equations for this case:

$$
\left\{\begin{array}{l}
(k-n) \alpha_{k-1}+(\gamma-k) \alpha_{k}+\gamma_{k} c_{i}=\beta_{k} \quad(k=0,1, \ldots, n-1) \\
\frac{1}{2}(m-1)(n+\alpha) n \alpha_{n \quad 1}+\gamma_{n-1} c_{i}=\beta_{n-1}+\frac{(-1)^{m(n-1)+1} 2^{m+1} n^{n} \delta_{i n}}{m!(n+\alpha)^{m-1}} \\
\alpha_{1}=0 .
\end{array}\right.
$$

By calculation we get

$$
D_{n}(\alpha,-1)=(-1)^{n} D_{n}(-1, \alpha)
$$

By (4.31) and by the definition of the ρ_{i} 's it is easy to check the first formula in (4.5).

Case IV $(\alpha=\beta=-1)$. In this case (4.29) and (4.32) become

$$
\begin{equation*}
\frac{1}{2}(m-1)(n-1) n \alpha_{0}+\gamma_{1} c_{i}=\beta_{1}+\frac{2^{m+1-n} \delta_{i 1}}{m!(n-1)^{m-1}} \tag{4.33}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{2}(m-1)(n-1) n \alpha_{n-1}+\gamma_{n-1} c_{i}=\beta_{n-1}+\frac{(-1)^{m(n-1)+1} 2^{m+1-n} \delta_{i n}}{m!(n-1)^{m-1}} \tag{4.34}
\end{equation*}
$$

At last we obtain the system of equations for this case:

$$
\left\{\begin{array}{l}
\frac{1}{2}(m-1)(n-1) n \alpha_{0}+\gamma_{1} c_{i}=\beta_{1}+\frac{2^{m+1-n} \delta_{i 1}}{m!(n-1)^{m-1}} \tag{4.35}\\
(k-n) \alpha_{k-1}-k \alpha_{k}+\gamma_{k} c_{i}=\beta_{k} \quad(k=1, \ldots, n-1) \\
\frac{1}{2}(m-1)(n-1) n \alpha_{n-1}+\gamma_{n-1} c_{i}=\beta_{n-1}+\frac{(-1)^{m(n-1)+1} 2^{m+1-n} \delta_{i n}}{m!(n-1)^{m-1}}
\end{array}\right.
$$

Expanding the coefficient determinant of this system in terms of the elements of the last column we get

$$
\begin{aligned}
A_{n}(-1,-1)= & \frac{1}{2}(m-1)(n-1) n\left\{\left[\gamma_{1}+(-1)^{n} \gamma_{n-1}\right](-1)^{n-1}(n-1)!\right. \\
& \left.+\frac{1}{2}(m-1)(n-1) n \sum_{k=1}^{n-1}(-1)^{n-k}(k-1)!(n-k-1)!\gamma_{k}\right\} \\
= & (-1)^{n-1} 2^{-n-1}(m-1)(n-1) n! \\
& \times\left\{\left[1+(-1)^{n}\right](n-1)-\frac{1}{2}(m-1)(n-1) \sum_{k=1}^{n-1}(-1)^{k}\binom{n}{k}\right\} \\
= & (-1)^{n-1} 2^{-n-2}\left(m^{2}-1\right)(n-1)^{2} n!\left[1+(-1)^{n}\right] \\
= & (-1)^{n}{ }^{1} 2^{n-2}\left(m^{2}-1\right)(n-1)^{2} n!D_{n}(-1,-1)
\end{aligned}
$$

Obviously, if n is odd, then $D_{n}(-1,-1)=0$ and if n is even then $D_{n}(-1,-1)=2$.

Solving (4.35) by Cramer's rule for even n we obtain c_{i}. Meanwhile using $d_{i}=q_{i}(1)=2^{n-1} \alpha_{0}$ and (4.33) we give d_{i}.

This completes the proof.

Corollary. Let $\alpha, \beta>-1$. The problem of $(0,1, \ldots, m-2, m)$-interpolation is singular if one of the following conditions is satisfied
(a) Both γ and δ are integers, and $n>\gamma+\delta$;
(b) $\alpha=\beta$ and n is odd.

The problem is regular if only one of γ and δ is an integer and if $n>\gamma+\delta$.
Proof. Case (a) has been shown in the proof of the theorem. Now let us show Case (b). Since

$$
D_{n}(\alpha, \beta)=(-1)^{n} D_{n}(\beta, \alpha),
$$

if n is odd and $\alpha=\beta$ then $D_{n}(x, \alpha)=0$.
For the last conclusion we note that if, say, γ is an integer and δ is not, then

$$
D_{n}(\alpha, \beta)=n!\sum_{k=0}^{\gamma} \frac{(-1)^{k}\binom{\gamma}{k}\binom{\delta}{n-k} \gamma_{k}}{\binom{n}{k}}
$$

But

$$
\operatorname{sgn}\binom{\delta}{n-k}=(-1)^{n-k+[\delta]+1}
$$

So

$$
\operatorname{sgn} D_{n n}(\alpha, \beta)=(-1)^{n+[j]+1} .
$$

This completes the proof.

References

1. A. M. Chak, A. Sharma, and J. Stabados, On a problem of P. Turán, Studia Sci. Math. Hungar. 15 (1980), 441-455.
2. G. G. Lorentz, K. Jetter, and S. D. Riemenschneider, "Birkhoff Interpolation," Addison-Wesley, Reading, MA, 1983.
3. P. Tluán, On some open problems of approximation theory, J. Approx. Theory 29 (1980), 23-85.

[^0]: *Supported by the National Natural Science Foundation of China.

